Augmented SPDNet: Second-Order Neural Network for Motor Imagery-Based BCI - A&O (Apprentissage et Optimisation)
Poster De Conférence Année : 2023

Augmented SPDNet: Second-Order Neural Network for Motor Imagery-Based BCI

Résumé

Brain Computer Interfaces (BCI) can be defined as a technology that measures brain activity and translates it into instructions for a digital system. We will focus on non-invasive (EEG)-based BCI (BCI-EEG). Let us consider a typical EEG signal after preprocessing. In the figure on the left, we show an EEG signal measured with 4 different electrodes. Our work will be focused on Motor Imagery (MI) BCI, so we want to understand if the subject, for example, is thinking about moving the left or the right hand.
Fichier principal
Vignette du fichier
SophiaSummit2023_FINAL.pdf (1.42 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04308549 , version 1 (27-11-2023)

Licence

Identifiants

  • HAL Id : hal-04308549 , version 1

Citer

Igor Carrara, Bruno Aristimunha, Marie-Constance Corsi, Raphael Yokoingawa De Camargo, Sylvain Chevallier, et al.. Augmented SPDNet: Second-Order Neural Network for Motor Imagery-Based BCI. Soph.IA summit 2023, Nov 2023, Sophia Antipolis, France. ⟨hal-04308549⟩
189 Consultations
84 Téléchargements

Partager

More