Optimization of the scalar complexity of Chudnovsky$^2$ multiplication algorithms in finite fields - Institut de Mathématiques de Luminy
Pré-Publication, Document De Travail Année : 2021

Optimization of the scalar complexity of Chudnovsky$^2$ multiplication algorithms in finite fields

Résumé

We propose several constructions for the original multiplication algorithm of D.V. and G.V. Chudnovsky in order to improve its scalar complexity. We highlight the set of generic strategies who underlay the optimization of the scalar complexity, according to parameterizable criteria. As an example, we apply this analysis to the construction of type elliptic Chudnovsky$^2$ multiplication algorithms for small extensions. As a case study, we significantly improve the Baum-Shokrollahi construction for multiplication in $\mathbb F_{256}/\mathbb F_4$.
Fichier principal
Vignette du fichier
2007.08203v1.pdf (274.53 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02906403 , version 1 (27-05-2024)

Identifiants

Citer

Stéphane Ballet, Alexis Bonnecaze, Thanh-Hung Dang. Optimization of the scalar complexity of Chudnovsky$^2$ multiplication algorithms in finite fields. 2021. ⟨hal-02906403⟩
198 Consultations
37 Téléchargements

Altmetric

Partager

More