Fast Mode and CU Splitting Decision for Intra Prediction in VVC SCC - Hub Intelligence Artificielle de CentraleSupélec
Article Dans Une Revue IEEE Transactions on Broadcasting Année : 2024

Fast Mode and CU Splitting Decision for Intra Prediction in VVC SCC

Résumé

Currently, screen content video applications are increasingly widespread in our daily lives. The latest Screen Content Coding (SCC) standard, known as Versatile Video Coding (VVC) SCC, employs a quad-tree plus multi-type tree (QTMT) coding structure for Coding Unit (CU) partitioning and screen content Coding Modes (CMs) selection. While VVC SCC achieves high coding efficiency, its coding complexity poses a significant obstacle to the further widespread adoption of screen content video. Hence, it is crucial to enhance the coding speed of VVC SCC. In this paper, we propose a fast mode and splitting decision for Intra prediction in VVC SCC. Specifically, we initially exploit deep learning techniques to predict content types for all CUs. Subsequently, we examine CM distributions of different content types to predict candidate CMs for CUs. We then introduce early skip and early terminate CM decisions for different content types of CUs to further eliminate unlikely CMs. Finally, we develop Block-based Differential Pulse-Code Modulation (BDPCM) early termination and CU splitting early termination to improve coding speed. Experimental results demonstrate that the proposed algorithm improves coding speed on average by 41.14%, with the BDBR increasing by 1.17%.
Fichier principal
Vignette du fichier
2024_TBC_Wang_et_al_VVC_SCC.pdf (618.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04572472 , version 1 (10-05-2024)

Identifiants

Citer

Dayong Wang, Junyi Yu, Xin Lu, Frédéric Dufaux, Bo Hang, et al.. Fast Mode and CU Splitting Decision for Intra Prediction in VVC SCC. IEEE Transactions on Broadcasting, 2024, 70 (3), pp.872-883. ⟨10.1109/TBC.2024.3394288⟩. ⟨hal-04572472⟩
115 Consultations
82 Téléchargements

Altmetric

Partager

More